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Correlation functions of the classical Heisenberg model II. 
Low temperature behaviour 

J Rae? 
Department of Physics, Queen Mary College, Mile End Road, London El 4NS, UK 

Received 13 September 1974 

Abstract. In the first of this pair of papers exact expressions were obtained for the pair 
correlation functions and susceptibilities of the classical Heisenberg model in terms of ellip- 
soidal wavefunctions. Here we examine the low temperature behaviour of these quantities. 
This necessitates an asymptotic expression for the ellipsoidal functions and, as no suitable 
form exists in the literature, about half of the present article is used in deriving one. The 
derivation follows the method of Langer and is to leading order only. This asymptotic form 
allows explicit calculation of the eigenvalues of the transfer matrix (to leading order) and 
hence a discussion of the low temperature behaviour of the correlation functions and 
susceptibilities. 

1. Introduction 

In the first of this pair of papers (Rae 1975, to be referred to as I)  the pair correlation 
functions and susceptibilities for the anisotropic classical Heisenberg model were 
expressed in terms of ellipsoidal wavefunctions. In I the behaviour of these quantities 
for high temperatures was made explicit by means of known series expansions for el 
functions, series which converge for high enough temperature. For low temperatures, 
in view of known results for similar models, we can hope only for asymptotic series and 
these will have to be based on asymptotic expansions of ellipsoidal wavefunctions. 

The el functions satisfy the differential equation (Arscott 1964) 

-- d2f ( A  + Bk2 snZz + p 2 k 4  sn4z)f = 0 
dz2 

where in the context ofthe Heisenberg model pis related to temperature by p = vl = l/k,T 
(see I and Rae 1974) and A and B are p-dependent eigenvalues. The doubly periodic 
solutions of (1) are the ellipsoidal wavefunctions, denoted by the generic symbols el(z) 
or elr(z), which are all of the form 

(2) el(z) = snPz cn'z dn'z F(sn2z) 

with each of p, IJ, T being either zero or one and F an entire function of its argument. 
The el functions therefore fall into eight types according to periodicity and parity and 
are further labelled by the indices n, m (Arscott 1964, Rae 1974). 

There already exist in the literature several asymptotic expansions for el functions. 
In a series of articles Muller (1966) developed asymptotic expansions for solutions of 
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(1) but these are obtained for large values of B with p remaining a free parameter and 
so are inappropriate for our purposes. A more relevant type of expansion has been 
obtained by Malurkar (1935) and Arscott and Sleeman (1970) by the Horn-Jeffreys 
technique. This gives a solution of (1) suitable for large values of p and with properly 
determined eigenvalues A and B ; unfortunately the series so obtained are not uniform 
and Stokes’s phenomenon occurs at the transition points. The calculation of the 
correlation functions involves many integrals of el functions. It turns out, as will be 
seen later, that the dominant contributions to these integrals for low temperatures 
come from the neighbourhoods of the transition points, the very places where the non- 
uniform series break down. A naive substitution of these series simply leads to divergent 
integrals. It seems, therefore, that although some portions of Arscott and Sleeman’s 
work are useful to us in what follows, their asymptotic expansions, as they stand, are 
not helpful in finding the correlation functions. 

It is clear from the above that what are needed are uniform asymptotic expansions 
valid, in particular, at the transition points of (1). Methods for finding such expansions 
are available in the mathematical literature. The equation (l), however, has the addi- 
tional slight complication that its transition points are not simple, but double zeros of 
the leading coefficient. The most suitable method for problems of this type appears 
to be that of Langer (1934) and we shall adopt his approach. 

In cj 2 below we calculate suitable uniform expansions for el functions. With appro- 
priate expansions for the eigenvalues A and B the transition points are found to be 
z = K, K +iK’ and their equivalents by periodicity; Langer’s method, after a lengthy 
calculation, yields expansions valid in open regions containing these points. We have 
had to restrict the present calculation to the leading order in l /p;  the reader will appre- 
ciate from what follows that the calculation of corrections, while possible in principle, 
could only be undertaken as part of a major study of ellipsoidal wavefunctions. The 
asymptotic forms, being obtained from a linear differential equation, require to be 
normalized but this can be done without great difficulty as the expressions are uniform 
in the variable z near transition points. The normalization calculation is presented 
separately in cj 3 as the technique used in performing the integrals recurs throughout 
this article. The following section considers the calculation of the asymptotic eigenvalues 
of the transfer matrix, the main ingredient in the correlation functions. Finally, in Q 5, 
we are able to return to the correlation functions and susceptibilities and examine 
their low temperature behaviour by using the asymptotic formulae in conjunction with 
the exact expressions obtained in I. 

2. Asymptotic expairsions for el functions 

As observed above the second order differential equation (1) has transition points of 
second order. A general theory of asymptotic solutions of equations of this type was 
developed long ago by Langer (1934) and it is this theory which we will follow here. 

The solutions of (1) which are of relevance for our problem are the doubly periodic 
ellipsoidal wavefunctions ; these exist only when A and B take special p-dependent 
eigenvalues so we must first of all find suitable asymptotic expansions for these values 
of A and B in powers of p -  ’. This preliminary work has already been done by Arscott 
and Sleeman (1970) and their results, with corrections for a minor misprint, give 

A - k2p2+Cp+0(1) - -(l+k2)pZ+Dp+O(l) (3) 
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where C ,  D are constants related to the type and indices of the corresponding el function 

c = - 4 ( b + d k ) k  D = 4(6 + Bk) 
with 

2- ( -1Y 2-(-1)” 
4 .  

B = m +  
4 

6 = n-m+ 

It follows that the equation (1) can be put into Langer’s form 

where 

qo(z) = k2(1 -sn2z)(l - k 2  sn’z) 

ql(z) = C +  Dk2 sn2z 

(4) 

( 5 )  

(7) 

and 

qz(Z9P) = 0(1), 

The transition points are the zeros of qo, namely double zeros at z = K ,  z = K +iK‘ 
and points equivalent to these by periodicity. 

In order to follow Langer’s method we restrict ourselves first of all to z in a neigh- 
bourhood of the real interval [0, K ]  which contains no transition point other than K .  
We arrange that this transition point lies at the origin by the change of variable 
x = K - z.  The equation (6) now becomes 

with 

xo(x) = kk: sd x nd x 

x ~ ( x )  = C + D k 2  cd2x 

XZ(X, P) = O(1) and k: = 1 - k 2  
(9) 

The essence of Langer’s method is to define certain auxiliary quantities by the complicated 
sequence of formulae 

and observe that the functions 
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where W is the Whittaker function (Abramowitz and Stegun 1965, Whittaker and 
Watson 1965) satisfy the differential equation 

with Q(x, p) = O(1). Comparison with equation (8) shows that to leading orders the 
functions y ,  satisfy the ellipsoidal wave equation : in fact Langer's paper shows that 
the corrections are O( l/p), that is to each function y of (1 1) there corresponds a solution 
f of (8) with f - y  = O(l/p). Langer actually uses Whittaker's M function instead of 
W but the latter is more convenient here. 

We now have the problem of carrying through the sequence of transformations 
(10) for our particular case, that is starting from (9). It is easy to see that 

K = p  J: xo(x) dx = k( 1 - cd x) (13) 

and with help from tables of integrals of elliptic functions (eg, Byrd and Friedman 1971) 

cnx '+dnx '  48 dnx '+kcnx '  C + Dk2 cd2x' dx' = In[( ) -( = s. kk: sd x' nd x' sn x' k ,  
and 

JGx xo(x')( 11 xo(x") dx" 

= In[ 11 xo(x") dx.]' = ln[k - k cd x']:. 
f 

These results together with formulae (10) enable us to calculate Langer's fundamental 
variable 4 : 

d n x + k c n x  c n x + d n x  48 1-cdx [I l + k  ) @ (  s n x  ) 5 = 2kp(l -cd x)+ln 

Note that as x -, 0, 5 + 0 like x2 so that the mapping from 4 to x is two-valued. If we 
are interested in only the leading order in 1/p the prefactor in (1 1) may be taken as 

Since the functions (1 1) are linearly independent solutions of (12) it follows that to leading 
order the ellipsoidal wavefunctions are suitable linear combinations of 

xo "2(x)~*'.1/4(+ 0 (18) 

with xo(x) given by (9) and 5 by (16). 
The particular linear combination of (18) which corresponds to a given standard 

el function depends on the type of the latter and may be determined by parity arguments 
in the style of Arscott and Sleeman (1970) as follows. For nonzero fixed x and p large, 
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t is large. We may use the well-known asymptotic expansion for Whittaker functions 
(Whittaker and Watson 1965) to approximate (18) by 

X O  - ' l2 (x)  e r  1 / 2 Y * B ( 1  +o(I/~)). 
On using (16) and reverting to the original variable z = K - x  we find this is equal to 
leading order to 

(19) 
where 

f * = N ,  eikrsnz(cn z)-*-'B(dn ~ ) - * - ~ ' ( l  f s n  z ) ~ B ( ~  Tk sn z ) ~ '  

The expression (19), which is valid away from z = K ,  is the result obtained with the 
Horn-Jeffreys method by Malurkar (1935) and Arscott and Sleeman (1970) (with their 
minor misprints corrected). On changing z to - z  the solution f + of (19) goes to 
( N + / N  -)f-. It follows that el functions with even parity at z = 0 must be proportional 
to the linear combination 

N -  f + + N +  f -  (20) 

N - f f - N +  f - .  (21) 

and those with odd parity to 

This gives us at once that, up to a normalization factor, the ellipsoidal wavefunctions 
uel, cel. del may be approximated uniformly by 

Xi " 2 ( x ) ( N  - %, 1 / 4 ( 8  + + w-b, 1/4( - 5)) (22) 
and se1 is given by the corresponding expression with a minus sign between the terms. 
The normalization of (22) will be discussed later. 

The above discussion applies for z in a region containing z = K and no other transi- 
tion point ; we next look at the behaviour around z = K + iK'. An appropriate change 
of variable now is z = K+iK'-iy which brings the transition point z = K+iK'  to 
y = 0. By means of the formula 

k 2  sn2(z, k) = dn2(y, kl ) ,  k: = 1 - k 2  

the equation (6) becomes in this case 

The previous argument may be worked through once more with the results (here we 
use [ in place of t) 

I C = &  (25) 



362 J Rae 

The particular combination of Whittaker functions to be used in this case may be 
determined by examining the parity at the point z = K + iK' ; the concIusion is that all 
four functions of interest, uel, sel, cel, del are simply proportional to 

where X o  and ( are given by the above. If we expand (27) as an asymptotic series for 
large [ and revert to the original variable z, the term (27) is proportional to f + given by 
(19) in accordance with the results of the Horn-Jeffreys method. 

3. Normalization of ellipsoidal wavefunctions 

In this section we normalize the asymptotic expressions we have obtained for the 
functions uelp, selp, celp and delp. It seems worth discussing this in some detail in a 
separate section as the type of integrals we will evaluate here will occur throughout the 
rest of this article. 

The normalization to be used here (see I) is 

which by periodicity arguments may be written 

$ sf dy JKK+iK' 
dfl(snzy - sn2p)[elp(p, y)]' = 1. 

For y E [0, K ]  we may transform to variables x, t of 0 2 and use formulae of the form (22) 
for el(y) according to its type. However, since these formulae are derived for p -+ + cc 
and sn y 2 0 for y E [0, K] it is clear that the contribution coming from W - B , ~ / ~ (  - 5) 
is in all cases exponentially small within the integral (29) and may be neglected. Thus 
we may take 

= W ) X i  '12(x)wg, L,L(t) (30) 

where A@) is a normalization constant to be determined. Similarly in the range of 
integration of fl  we may take 

(31) 

Having made these substitutions in (29) the integrals are best evaluated in terms 

el(P) = N(d)Xi '"(Y)K, 1/4(1). 

of the variables (, i. Let us look first at 

I = Jo dy(sn2y - ~n~f l ) [ e l ( r ) ]~ .  
K 

From (16), (17) and (9) we have to leading order 
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and therefore 

We have been working throughout to the leading order in l /p so we may to within the 
same approximation simplify (33) quite considerably. Since the Whittaker function 
falls off exponentially we may replace the upper limit of integration by + CO and then 
expand the remaining part of the integrand in powers of (/A and drop all but the leading 
term. This gives 

m 

(34) 

The remaining integral is standard; it may be found, for example, in Gradshteyn and 
Ryzhik (1965 formula 7.61 1(4)), or by expressing the Whittaker function in terms of 
Hermite polynomials. The result depends, of course, on B given by ( 5 )  and may in all 
cases be expressed as r ( m +  l)r(2B-m). By using I ,  the normalization integral (29) 
may be put in the form 

1 
11 = " ' (B) ( '  -sn2b) Jo C-*[&.1,4(C)l2 dt.  

K + iK' 

-- 2ik2 Nz(!)r(m + 1)r(28 - m) s (1 - sn2b) [el@)]? db = 1 
IT 2kki K 

leading, after corresponding substitutions in the /3 integral to 

The remaining integral here is the same as in (34); it takes the value 

r(n - m + 1)r(26 - n + m). 

NZ(a)NZ(B) = 2xkk:(r(m+ l)r(n - m -t 1)r(28- m)r(2d - n + m))- l .  

A simple re-arrangement of (35) now gives the normalization constants 

(36) 
The normalization condition (28) being a condition on elp only determines this com- 
bination of normalizing factors. This, however, is all that is needed in what follows. 
The method used in this section for evaluating the integrals will be followed closely in 
the rest of this article. 

4. The eigenvalues of the transfer matrix 

The eigenvalue equation for the transfer matrix has already been given in equation (4) 
of I. For the eigenfunctions uelpTn it may be written 

or, making use of periodicity, 

d/3(sn2y - snZP)2 cosh(pk2 sn ct sn p sn y) uelpT,,(p, y )  
71 

= uATn uelp';,(K + iK', K). 
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This is now in a form suitable for using the asymptotic formula for uelp. Notice, 
however, that for consistency we ought then to drop the decreasing exponential term 
in cosh, that is, we should replace the 2cosh factor by exp(pk’1sn alsn /3 sn y)  since 
sn /3 and sn y are non-negative in the region of integration. The double integral may 
now be evaluated by the method used in 0 3. To leading order the exponential factor 

exp(pk21sn alsn /3 sn y )  - exp(pklsn a [ )  exp( -&n a15) exp( -4klsn ali) (39) 

so that the y integration in (38) may be extracted as 
K 

I ,  = Io dy(sn2y - sn2/3) uel;,,(y). 

(From here on we suppose sn a > 0 for simplicity ; for the negative case sn a should be 
replaced by Isn a1 throughout.) If we now change completely to the variable e, insert 
the asymptotic formula (30) and keep only the leading order we have 

N(m+f)(l-sn2/3) 
2 2 m +  1 1/4 314 3/2  

- - 
cc k k l  

For the relationship between the Whittaker function and Hermite polynomial and 
for the evaluation of the integral see, for example, Abramowitz and Stegun (1965, 
13.6.38 and 22.13.17 respectively). This expression for 1,  is now to be put back into 
(38) and the /3 integration performed. In terms of the variable of 0 2 this amounts to 
almost the same calculation as that just given for I, and so will not be given again. The 
final result for the left-hand side of (38) is 

N ( m  + ;t))N(n - m + i) epksna  (2m) ! [2(n - m)] ! 
2,”+ 1p1/2k3/4k1 (1 +sn a)’I2(1 + k  sn a)’/’ m !  ( n - m ) !  

1-sna 1-ksna  n - m  

l + k s n a )  ‘ 

For the right-hand side of (38), uelp;,,(K +iK’, K) may be evaluated by direct substitution 
of y = K in (30) and /3 = K+iK’ in (31). This gives 

. (42) 
N(m+f))N(n-m+f)p’ / ’  (2m)! [2(n-m)]! 

22w4k  m !  ( n - m ) !  uelp?,,(K + iK‘, I<) - (-  1)” 

Finally, if (41) and (42) are used in (38) we obtain the desired asymptotic expression 
for the eigenvalue 

(43) 
sna-1 ksna-1  n - m  

2p(l+ k sn a)’”(k+ k sn a ) ‘ / 2 [ a ) m (  k sn a +  1) ‘ 

epk sn u 

UATn - 
As the parameter a in the case considered will lie between iK’ and K + i K ‘  on the line 
Im a = K‘ we have sn a > k sn a > 1. Thus the expression for u i  is always positive 
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and the last two factors in (43) are of magnitude less than unity. It follows that the 
maximum u l  is given by n = m = 0 

e r k s n a  

l o  E un: - (44) 2 p ( 1 + k s n a ) 1 1 2 ( k + k s n a ) 1 i 2  

in agreement with the expression found in earlier work (Rae 1974). 

we find that the argument used above can be carried through exactly as before and, 
indeed, since 6, /? are the same for uel’;, and sel’;, + leads to exactly the same expression 
(43). Further, on looking again at Langer’s method it is apparent that even taking into 
account corrections to this leading term we would obtain exactly the same asymptotic 
series for uel and sel, the differences being O(e-C). We conclude, then, that to leading 
order SA;,,+ is given by (43). 

For the eigenvalues CA!,,+ the discussion has to be changed a little since the functions 
cel(y) are zero for y = K .  The simplest adaptation of the argument is to differentiate 
the eigenvalue equation with respect to y before putting y = K ,  /3 = K + iK’. This gives 

c l  cel(K +iK’) cel’(K) 

If we turn now to the eigenvalues SA;,,+ corresponding to eigenfunctions selp;,, 

(45) 
By direct substitution of /3 = K + iK‘ in (3 1) one obtains 

N(n-m++)p1’4 [2 (n -m) ] !  
( n - m ) !  2.201 - m ) k  112 cel;n+l(K+iK‘) - (-1)”-” 

1 

and by differentiating (30) with respect to y and putting y = K 

cel’Tn+ , ( K )  - (- 1)’”’ 12p314k114k11271-t12N(m+~)T(m+~). 1 (47) 

The integral on the right-hand side of (45) may be evaluated by the technique already 
used for (38); there are no noteworthy features except that cel;n+l(y) now appears in 
terms of wm+3/4,1/4(() and hence in terms of HZm+ t((1/2) so that it has indeed a simple 
zero at y = K .  The result for the eigenvalue is 

sna-1  ksna-1  n - m  

s n a + 1  k s n a + 1  
ik cn a epksna ( k  + k  sn a)-3/2(1 + k sn a)- ( -)’”( ) . (48) c l%+ 1 ‘V - 

2P 

Note that i cn a is a real quantity so the eigenvalue is real as is necessary for a Hilbert- 
Schmidt operator. 

Lastly, a similar calculation may be performed for dl;,+ 1.  In this case it is con- 
venient to differentiate the eigenvalue equation with respect to /3 and so obtain 

dA del(K) del’(K + iK’) 

(49) 
Here it is del’;,. 1(/3) which is related to the odd Hermite polynomial H2(n-m)+ l ( c1 /2 )  

and so has the expected simple zero at /3 = K + iK’. The calculation, though lengthy, 
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goes through just as above to yield 

(50) 
sna-1  ksna-1 n - m  ( - ) m (  ) s n a + 1  k s n a + 1  

i dn a epksna  ( k + k  sn t~)-’~’(l + k sn dA?n+, N - 
2P 

Here i dn cc is real and hence so is the eigenvalue. 
The above calculations are so complicated that it is useful to make an independent 

check of the results. This may be done by using for the kernel K(a ; 8, y ; p’, y‘) of the 
transfer matrix (see I, equation (4)) the sum over all normalized eigenfunctions and 
eigenvalues 

which comes from the completeness of ellipsoidal surface wavefunctions. If we choose 
y = 7‘ = K ,  fi = 8‘ = K+iK’ all terms in the sum vanish except those involving 
uelp or selp. We know from (42), (36) that 

(2m)! [2(n - m)] ! 
(m !)’ [(n - m) !I2 [uelp?,,(K +iK’, K)I2 - [selp?,,. l(K +iK’, K)I2  - pk1122-2n+1- 

and from (43) an asymptotic expression for uA;,, and sly , ,+ 1 .  Inserting these into (51) 
and putting n - m = r the series becomes 

X (2m)! (sncc-l)m f ( 2 r ) !  ( ksncc-1 ) 
epksna (1+ksna)-”2(1+sna)-1’22 2m2 ___ 

m = 0 2  (m!) s n a + l  r = 0 2 2 ‘ ( r ! ) 2  k s n a + 1  
- - & s n a  

which is indeed K(cc; K +iK’, K ;  K +iK’, K) as required. A similar check has been 
made for cases CA and dA by considering B2K/8yBy‘ and a2K/ap@’;  these involve con- 
sideration of ellipsoidal functions scel and sdel and will not be reproduced here. 

5. The correlation functions and susceptibilities 

After the extensive preliminaries of the preceding sections we are now in a position to 
return to the correlation functions and susceptibilities of the classical Heisenberg 
model. These quantities were defined in I in terms of ellipsoidal wavefunctions and 
we may now use the asymptotic expansions of this article to elicit the low temperature 
behaviour. 

For the calculation of ( X ~ X ~ + ~ )  it is convenient to evaluate first of all the self-correla- 
tion (x’). From (30), (31) and I(13) we have 

(x2) = il (sn2y - sn2B)k2 sn2B sn2y[uelp;(B, y)I2 dfi dy 
87T 

w:,4, 1/4(0w:14, 1/4(5) - 1, ( 5 2 )  

In evaluating the integral here we have used again the methods employed in $ $ 3  and 4. 
Since the points /l = K +iK’, y = K give the dominant contribution we may, in fact, 
put sn K = 1 and sn(K+iK’) = l /k  into the integrand and the integral in (52) then 
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reduces precisely to the normalization integral (29). Since selt and uelg have the same 
asymptotic expansion this argument applies equally to the integral Zy (see I ,  equation (8)) 
which is also asymptotically equal to 1. Thus we have for large ,U 

( x 2 )  - ( z y  = O(l/p). (53) 
The asymptotic form of ( x j x j + , )  depends on the greatest of the eigenvalues SIT”+ ; 
from $ 4  this is plainly SAY which has the same asymptotic expansion as I ,  namely 
formula (44). (We may note in passing that SA: was the greatest of the  SIT^+^ also for 
high temperatures. I t  seems likely that this is true throughout the temperature range 
but I have no proof of this.) We now have, as in I(26) 

with 
R < ( x 2 )  -(I:)’ = O(~/,U) 

or 
(54) 

( x j x j + r )  1 + O ( ~ / P )  ( 5 5 )  

and to within errors of O(e-”) there is no r dependence. As the susceptibility xx is 
proportional to (A, + sAy)/(Io -SI:) this shows an exponential e- l / T  type of divergence 
as T -, 0. Similar behaviour was found for the partially anisotropic model by Joyce 
(1967). It should be noted that the dominant role played by the point y = K ,  fl = K + iK’ 
in the low temperature limit ought to be expected since the x-x coupling a was taken 
to be of greatest magnitude and by 1(3) the point y = K ,  fl = K+iK‘ corresponds to 
x = 1,y = z = 0. 

The corresponding results for the y and z directions, to which we now turn, are 
somewhat less trivial. From (48) it is clear that the greatest of CA’;,+ again corresponds 
to n = m = 0. By using the methods employed earlier, and since cnK = 0 this case is 
not just a disguised form of the normalization integral, we obtain 

and find that (JY)’ (as given by I(10)) has the same asymptotic limit. Thus we have 

(Y2>  -(JY = 0(1/P2)  
and the correlation function becomes 

Thus for small fixed temperature T the correlation function falls off exponentially with 
r,  and for T = 0 it also is zero as it should be since all the y components of the spins 
vanish. The susceptibility in the y direction is given by (cf I(36)) 

1 -- - 1 l + s n a + i c n a  1 1 -- N -  - 
2kl l + s n a - i c n a  2kl sna - i cna  2(a-b)’ 
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The last expression is just what one would expect from an elementary calculation. 
At low temperatures the spins with Hamiltonian I(1) are lined up in the x direction. 
A weak magnetic field h added in the y direction will rotate each spin in the x y  plane 
by a small angle 6 = h/2(a-b) to keep the free energy minimized. This leads directly 
to (58). 

For the z correlations the contributing eigenvalue is dAy and a calculation similar 
to the above gives the results 

(KY)2 = 1/2p + O(1/p2) 

1 
xz ~ 2(a-c)' 

Since the low temperature results above have been derived by means of asymptotic 
expansions we are not able to choose parameters freely to examine limiting cases. It is 
clear from the working that we are barred, for example, from taking k = 0 or from pro- 
ceeding to the isotropic case. We may without difficulty take the limit corresponding 
to b = c = 0, as we did in I, but although our results then agree with those of Thompson 
(1968) to leading order the comparison is not really meaningful in the absence of the 
correction terms. A calculation of these higher terms would be of interest but, as the 
requisite mathematical results do not yet exist, would at present be prohibitively com- 
plicated. 
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